COMPARISON THEOREMS FOR BOUNDED SOLUTIONS

OF $\Delta u = Pu$

BY

MOSES GLASNER

ABSTRACT. Let P and Q be C^1 densities on a hyperbolic Riemann surface R. A characterization of isomorphisms between the spaces of bounded solutions of $\Delta u = Pu$ and $\Delta u = Qu$ on R in terms of the Wiener harmonic boundary is given.

In 1959, H. Royden [6] proved the following comparison theorem: If P and Q are nonnegative C^1 densities on a Riemann surface R such that there is a constant c with $c^{-1}P \leq Q \leq cP$ outside some compact subset of R, then the spaces of bounded solutions of $\Delta u = Pu$ and $\Delta u = Qu$ on R are isomorphic. In response to a question posed by Royden, M. Nakai [4] in 1960 showed that the same conclusion follows under the assumption that $\int_R |P-Q| < +\infty$. The conditions $\int_R |P-Q| < +\infty$ and $c^{-1}P \leq Q \leq cP$ outside a compact subset are independent and neither is a necessary condition for the conclusion. Recently A. Lahtinen [2] gave a necessary and sufficient condition for the bounded solutions of $\Delta u = Pu$ on R to be isomorphic to the harmonic bounded functions. This result actually is implicit in the paper of Loeb and Walsh [3] in the axiomatic setting.

In this paper a necessary and sufficient condition is given for the existence of an isomorphism S between the spaces of bounded solutions of $\Delta u = Pu$ and $\Delta u = Qu$ on R with |u - Su| bounded by a potential. This result contains the ones mentioned above as special cases.

1. Let R be a Riemann surface and P a nonnegative C^1 density on R. To avoid trivial considerations we assume R is hyperbolic. We denote by P(U) the space of solutions of $\Delta u = Pu$ on an open subset U of R. The subspace of bounded solutions of P(U) will be denoted by PB(U). The superscript C in the notation $P^c(U)$ and $P^cB(U)$ denotes the subspaces with continuous extensions to ∂U . It is conventional to use the symbol H in case $P \equiv 0$.

Received by the editors January 18, 1974.

AMS (MOS) subject classifications (1970). Primary 31A35; Secondary 30A50, 35J05.

Key words and phrases. Solution of $\Delta u = Pu$, Riemann surfaces, Green's function, maximum principle, Wiener harmonic boundary.

The Wiener ideal boundary will play a fundamental role and therefore we briefly mention some of its properties here (for more details, cf. [7]). The Wiener algebra N associated with R is the set of bounded continuous harmonizable functions on R. The bounded continuous superharmonic functions on R, for example, are contained in N. It can be seen that N is also a vector lattice. The potential subalgebra N_{δ} consists of the functions in N with 0 harmonizations.

The Wiener compactification R^* of R is a compact Hausdorff space which contains R as an open dense subset and such that the functions in N extend continuously to R^* and separate points there. The space R^* is unique up to a homeomorphism fixing R pointwise. In general we shall use the same symbol for a function in N and its continuous extension to R^* . We use \overline{A} to denote the closure of A in R^* and ∂A for the boundary of A with respect to R. If we use A^* to denote a subset of R^* , then by A we shall mean $A^* \cap R$.

We shall use the notation $\|\varphi\|_A$ for the supremum of the function $|\varphi|$ on A.

2. We consider solutions of $\Delta u = Pu$ on subregions G with ∂G piecewise analytic (∂G may be \emptyset). The fact that nonnegative solutions are subharmonic gives the following (cf. [3]).

Lemma. If $u \in P^cB(G)$, then $\|u\|_G \leq \|u\|_{\partial G \cup (\overline{G} \cap \delta)}$. Moreover, if $u | \partial G \cup (\overline{G} \cap \delta) \geq 0$, then $u \geq 0$.

We now describe the integral operator T_G which is the basic tool here. Let Ω be a relatively compact region in R with $\partial\Omega$ piecewise analytic. Define $\tau_{G\cap\Omega}$ on the bounded C^1 functions on Ω by setting $\tau_{G\cap\Omega}\varphi=\int_{\Omega}g_{G\cap\Omega}(\cdot\ ,z)\varphi P$, where $g_{G\cap\Omega}(\cdot\ ,z)$ denotes the Green's function of $G\cap\Omega$ with pole at z. Then $\tau_{G\cap\Omega}\varphi$ is a C^2 function on $G\cap\Omega$ vanishing continuously on $\partial(G\cap\Omega)$ and satisfies $\Delta\tau_{G\cap\Omega}\varphi=-\varphi P$.

Therefore setting $T_{G \cap \Omega} u = u + \tau_{G \cap \Omega} u$ gives an operator $T_{G \cap \Omega}$:

 $P^c(G\cap\Omega) \longrightarrow H^c(G\cap\Omega)$ such that $u-T_{G\cap\Omega}u$ | $\partial(G\cap\Omega)=0$. For $u\in P^cB(G)$ with $u\geqslant 0$, $T_Gu=\lim_{\Omega\to R}T_{G\cap\Omega}u$ exists and is given by $T_Gu=u+\tau_Gu$, where $\tau_Gu=\int_Gg_G(\cdot,z)uP$. If $u\in P^cB(G)$ is arbitrary, then T_Gu is defined to be $T_Gu_1-T_Gu_2$ where $u=u_1-u_2, u_i\in P^cB(G), u_i\geqslant 0$. We collect here some of the known properties of T_G that will be needed in later arguments (cf. [4], [5]).

THEOREM. The operator $T_G\colon P^cB(G)\to H^cB(G)$ gives an isometric isomorphism such that $u-T_Gu\mid \partial G\cup (\overline{G}\cap \delta)=0$. If $\int_G g_G(\cdot,z)P<+\infty$, for every $z\in G$, then T_G is onto.

3. We introduce the set $\delta^P = \{p \in \delta \mid p \text{ has a nbd } U^* \text{ in } R^* \text{ with } f_U g_U(\cdot,z) P < +\infty \text{ for each } z \in U\}$. Here $g_U(\cdot,z)$ for an arbitrary open set U is defined as follows: Let the component of U containing z be denoted by U_z . Then $g_U(\cdot,z)$ is the Green's function of U_z on U_z and zero on $U \setminus U_z$.

Clearly δ^P is an open subset of δ . The significance of δ^P stems from the following

THEOREM. The functions in PB(R) restricted to δ vanish on $\delta \backslash \delta^P$.

It is sufficient to prove the assertion for $u \in PB(R)$ with $u \ge 0$. By Theorem 2, $\tau_R u(z) < +\infty$ for each $z \in R$. Suppose $p \in \delta$ and $u(p) \ne 0$. By the continuity of u on R^* there is a neighborhood U^* of p and an $\epsilon > 0$ such that $u \mid U^* \ge \epsilon$. Then

$$+\infty > \tau_R u(z) > \int_U g_R(\cdot,z) uP \ge \epsilon \int_U g_R(\cdot,z) P \ge \epsilon \int_U g_U(\cdot,z) P,$$
 for each $z \in U$. Thus $p \in \delta^P$.

Combining this with Lemma 2 gives the

COROLLARY. If $u \in PB(R)$, then $\|u\|_{R} \leq \|u\|_{\delta^{P}}$. If in addition $u \mid \delta^{P} \geq 0$, then $u \geq 0$.

4. Denote by $C_C(A)$ the continuous functions with compact support in A and by $C_0(A)$ the closure of $C_C(A)$ with respect to $\|\cdot\|_A$.

THEOREM. The spaces PB(R) and $C_0(\delta^P)$ are isomorphic vector lattices. The isomorphism is obtained by restriction to δ^P , i.e. $PB(R) | \delta^P = C_0(\delta^P)$.

We begin the proof by observing that for any $f \in N$ with $K = \operatorname{supp}(f \mid \delta)$ a compact subset of δ^P , there exists a $u \in PB(R)$ with $u - f \mid \delta = 0$. In fact we may assume $f \geq 0$. Cover K by a finite number of sets U_i^* , $i = 1, \dots, m$ such that $\int_{U_i} g_{U_i}(\cdot, z) P < +\infty$ for each $z \in U_i$. By taking U_i^* slightly smaller if necessary we may assume that ∂U_i is piecewise analytic.

By the Urysohn property for N we can find $\varphi_i \in N$ such that $\operatorname{supp} \varphi_i \subset U_i^*$, $\varphi_i \geq 0$ and $\Sigma_1^m \varphi_i \mid K = 1$. Let $f_i = \varphi_i f \in N$ and note that $f = \Sigma_1^m f_i$ on K. Denote by h_i the harmonic projection of f_i with respect to U_i , i.e. $h_i \in H^cB(U_i)$ and $0 = f_i \mid \partial U_i = h_i \mid \partial U_i, f_i \mid U_i^* \cap \delta = h_i \mid U_i^* \cap \delta$. Let G be any component of U_i . Then $\int_G g_G(\cdot, z) P < +\infty$ for every $z \in G$. Thus by Theorem 2 there is a function $u \in P^cB(G)$ such that $u \mid \partial G = 0, u \mid \overline{G} \cap \delta = h_i \mid \overline{G} \cap \delta$. Repeating this in each component of U_i we obtain $v_i \in P^cB(U_i)$ with $v_i \geq 0, v_i \mid \partial U_i = 0$ and $v_i - f \mid U_i^* \cap \delta = 0$. Setting $v_i = 0$ on $R \setminus U_i$ gives a subsolution on R.

Let k_i be the least harmonic majorant of v_i . Take an exhaustion $\{\Omega_n\}$ of R by regular regions. Denote by u_{in} the function in $P^c(\Omega_n)$ such that $u_{in}-v_i\,|\partial\Omega_n=0$. Then we have $0\leqslant v_i\leqslant u_{in}\leqslant u_{i,n+1}\leqslant k_i$. Thus $u_i=\lim_n u_{in}$ is in PB(R) and $0\leqslant v_i\leqslant u_i\leqslant k_i$. Since k_i-v_i is a potential on R it vanishes on δ and consequently k_i-u_i also vanishes there. That is, $u_i-v_i\,|\delta=0$. The function $u=\Sigma_1^m\,u_i\in PB(R)$ has the property that $u\,|\delta=f$.

For an arbitrary $f \in C_0(\delta^P)$ there is a sequence $\{f_k\}$ of functions of the sort considered above such that $\|f - f_k\|_{\delta^P} \to 0$. Then the corresponding sequence of solutions $\{u_k\}$ is a Cauchy sequence with respect to $\|\cdot\|_R$ by Corollary 3. Thus there is a $u \in PB(R)$ such that $\|u - u_k\|_R \to 0$. Let $u \mid \delta^P = g$ and for a given $\epsilon > 0$ take k such that $\|u - u_k\|_R < \epsilon$ and $\|f - f_k\|_{\delta^P} < \epsilon$. Then the denseness of R in R^* gives $\|g - f_k\|_{\delta^P} < \epsilon$. This means g = f on δ^P .

Thus far we have shown $C_0(\delta^P) \subset PB(R) | \delta^P$. For the proof of the reverse inclusion take $u \in PB(R)$ which without loss of generality can be assumed to be nonnegative. By Theorem 3, $u | \delta \setminus \delta^P = 0$. Set $K_n = \{p \in \delta | u(p) \ge 1/n\}$. K_n is a closed and hence compact subset of δ . Since $K_n \subset \delta^P$ it is compact in δ^P . Now choose $\varphi_n \in N$ such that $\varphi_n K_n = 1$, $\varphi_n | \delta \setminus K_{n+1} = 0$ and $0 \le \varphi_n \le 1$. Then $\varphi_n u \in C_C(\delta^P)$ and $\|u - \varphi_n u\|_{\delta^P} \le 1/n$.

Corollary 3 implies that the mapping of PB(R) onto $C_0(\delta^P)$ obtained by restriction to δ^P preserves order and sup norm.

A slightly more tractable description of δ^{P} can be derived from this theorem.

COROLLARY. $\delta^P = \{ p \in \delta \mid p \text{ has a nbd } U^* \text{ in } R^* \text{ such that } \int_U g_R(\cdot, z) P < +\infty \text{ for each } z \in U \}.$

Since $g_R(\cdot,z) \ge g_U(\cdot,z)$ for $z \in U$ we need only show that for each $p \in \delta^P$ there is a neighborhood U^* of p such that $\int_U g_R(\cdot,z) P < +\infty$. But by the theorem there is a function $u \in PB(R)$ such that u(p) = 2. Set $U^* = \{q \in R^* | u(q) > 1\}$. By Theorem 2, $\tau_R u$ exists and, in particular, $+\infty > \tau_R u(z) \ge \int_U g_R(\cdot,z) P$, for $z \in U$.

5. The main result is as follows:

THEOREM. Suppose P and Q are nonnegative C^1 densities on a hyperbolic Riemann surface R. There is an isomorphism S between PB(R) and QB(R) such that |u-Su| is bounded by a potential on R if and only if $\delta^P = \delta^Q$.

If $\delta^P = \delta^Q$, then both PB(R) and QB(R) are isomorphic to $C_0(\delta^P)$ by restriction to δ^P . Thus define $S: PB(R) \longrightarrow QB(R)$ by $u - Su | \delta^P = 0$. In order to show that |u - Su| is bounded by a potential, express u as $u = u_1 - u_2$ with $u_i \in PB(R)$ and $u_i \ge 0$. Note that $u | \delta^P = u_1 | \delta^P - u_2 | \delta^P$ which implies that $Su = Su_1 - Su_2$, $Su_i \ge 0$. Take $h_i \in HB(R)$ with $h_i | \delta = u_i | \delta$, i = 1, 2. Since $u_i - h_i$ and $Su_i - h_i$ are bounded subharmonic functions on R which vanish on δ we have $u_i - h_i \le 0$, $Su_i - h_i \le 0$. Thus |u - Su| is bounded by the potential $(h_1 - u_1) + (h_1 - Su_1) + (h_2 - u_2) + (h_2 - Su_2)$.

Conversely, suppose an isomorphism S as described in the theorem exists. Then $|u - Su| | \delta = 0$ for each $u \in PB(R)$. If $p \in \delta^P$, then by Theorem 4 we can find $u \in PB(R)$ with u(p) = 1. This implies that Su(p) = 1 and in view of Theorem 3 we conclude that $p \in \delta$, i.e. $\delta^P \subset \delta^Q$. By symmetry we obtain $\delta^P = \delta^Q$.

The assumption on |u-Su| implies that S preserves the behavior of functions on δ^P . In view of Theorem 4 this means that S commutes the lattice operations. If the assumption on |u-Su| is replaced by the assumption that S is a vector lattice isomorphism, then by the Kakutani theorem we see that δ^P and δ^Q are homeomorphic.

The results of Royden [6] and Nakai [4] are immediate consequences.

COROLLARY. If P and Q are C^1 densities on a hyperbolic Riemann surface R such that $c^{-1}P \leq Q \leq cP$ outside some compact subset and for some constant c, then PB(R) and QB(R) are isomorphic.

COROLLARY. If P and Q are C^1 densities on a hyperbolic Riemann surface R and $\int_R |P-Q| < +\infty$, then PB(R) and QB(R) are isomorphic.

In the first case it is clear that the hypothesis implies that $\delta^P = \delta^Q$. In the second case note that $g_R(\cdot,z)|\delta=0$ and hence there is a neighborhood V^* of δ in R^* with $g_R(\cdot,z)|V^* \leq 1$. Thus $\int_V g_R(\cdot,z)|P-Q|<+\infty$. By the Harnack inequality this is also valid if z is allowed to vary and the conclusion $\delta^P = \delta^Q$ now follows.

Actually the corollaries followed from the slightly weaker hypotheses $c^{-1}P \le Q \le cP$ in $V, \int_V |P-Q| < +\infty$, where V^* is a neighborhood of δ in R^* .

Denote by w the greatest solution of $\Delta u = Pu$ on R which is less than 1 on R. The following result is due to Lahtinen [2] and Loeb and Walsh [3].

COROLLARY. HB(R) and PB(R) are isomorphic vector lattices if and only if 1 is the least harmonic majorant of w on R.

Let h be the least harmonic majorant of w. Then h-w is a potential and hence vanishes on δ . Therefore, h is the constant 1 if and only if $w|\delta=1$. This in turn is equivalent to $\delta^P=\delta$ which is equivalent to PB(R) being isomorphic to HB(R).

6. Denote by PBE(R) (resp. PBD(R)) the subspace of PB(R) such that $E(u) = \int_R du \wedge *du + u^2P < + \infty$ (resp. $D(u) = \int_R du \wedge *du < + \infty$). Denote by Δ the Royden harmonic boundary of R, R^* the corresponding compactification and define

$$\Delta^{P} = \left\{ p \in \Delta \mid p \text{ has a nbd } U^{*} \text{ in } R^{*} \text{ with } \int_{U} P < + \infty \right\},$$

$$\Delta_{P} = \left\{ p \in \Delta \mid p \text{ has a nbd } U^{*} \text{ in } R^{*} \text{ with } \iint_{U \times U} g_{R}(x, y) P(x) P(y) < + \infty \right\}.$$

These definitions lead to criteria for isomorphisms between the closures with respect to the sup norm of the bounded energy finite or bounded Dirichlet finite solutions.

THEOREM. Suppose P and Q are nonnegative C^1 densities on R.

There is an isomorphism S between $\overline{PBE(R)}$ and $\overline{QBE(R)}$ (resp. $\overline{PBD(R)}$) and $\overline{QBD(R)}$) such that |u-Su| is bounded by a potential on R if and only if $\Delta^P = \Delta^Q$ (resp. $\Delta_P = \Delta_Q$).

The proof is analogous to that of Theorem 5 and therefore we only mention some differences. The operator T_G defined in §2 also maps the spaces $P^cBE(G)$ and $P^cBD(G)$ into $H^cBD(G)$. If $\int_G P < +\infty$, then

$$T_G(P^c BE(G)) = H^c BD(G)$$

(cf. [1]) and if $\iint_{G\times G} g_G(x, y) P(x) P(y) < +\infty$, then

$$T_G(P^cBD(G)) = H^cBD(G)$$

(cf. [5]). This is the motivation for the choice of Δ^P and Δ_P . The proper analogue of Theorem 4 is that the closure of PBE(R) (resp. PBD(R)) with respect to the sup norm restricted to Δ^P (resp. Δ_P) is the space $C_0(\Delta^P)$ (resp. $C_0(\Delta_P)$) but this causes no complications. In the proof some complications do occur because of the need to establish the convergence of sequences of functions in the D or E norm.

ADDED IN PROOF. M. Nakai (Banach spaces of bounded solutions of $\Delta u = Pu$ on hyperbolic Riemann surfaces, Nagoya Math. J. 53 (1974), 141–155) has

simultaneously discovered Theorem 5 and also has given a more detailed analysis of its consequences.

REFERENCES

- 1. M. Glasner and R. Katz, On the behavior of solutions of $\Delta u = Pu$ at the Royden boundary, J. Analyse Math. 22 (1969), 343-354. MR 41 #1995.
- 2. A. Lahtinen, On the solutions of $\Delta u = Pu$ for acceptable densities, Ann. Acad. Sci. Fenn. Ser. A I No. 515 (1972).
- 3. P. A. Loeb and B. Walsh, A maximal regular boundary for solutions of elliptic differential equations, Ann. Inst. Fourier (Grenoble) 18 (1968), fasc. 1, 283-308. MR 39 #4423.
- 4. M. Nakai, The space of bounded solutions of $\Delta u = Pu$ on a Riemann surface, Proc. Japan Acad. 36 (1960), 267-272. MR 22 #12216.
- 5. , Dirichlet finite solutions of $\Delta u = Pu$ and classification of Riemann surfaces, Bull. Amer. Math. Soc. 77 (1971), 381-385. MR 45 #2162.
- 6. H. L. Royden, The equation $\Delta u = Pu$ and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. A I No. 271 (1959). MR 22 #12215.
- 7. L. Sario and M. Nakai, Classification theory of Riemann surfaces, Die Grundlehren der math. Wissenschaften, Band 164, Springer-Verlag, Berlin and New York, 1970. MR 41 #8660.

DEPARTMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PENNSYLVANIA 16802